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ABSTRACT

The chaotic behavior of the continental climate of an atmospheric general
circulation model is investigated from an ensemble of decadal simulations with
common specifations of radiative forcings and monthly ocean boundary conditions,
but different initial states of atmosphere and land. The variability structures of key
model land-surface processes appear to agree sufficiently with observational esti-
mates to warrant detailed examination of their predictability on seasonal time scales.
This predictability is inferred from several novel measures of spatio-temporal
reproducibility applied to eleven model variables. The reproducibility statistics are
computed for variables in which the seasonal cycle is included or excluded, the former
case being most pertinent to climate model simulations, and the latter to predictions
of the seasonal anomalies. Because the reproducibility metrics in the latter case are
determined in the context of a “perfectly” known ocean state, they are properly viewed
as estimates of the potential predictability of seasonal climate. Inferences based on
these reproducibility metrics are shown to be in general agreement with those derived
from more conventional measures of potential predictability.

It is found that the land-surface variables which include the seasonal cycle are
impacted only marginally by changes in initial conditions; moreover, their seasonal
climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a
seasonal land-surface anomaly is generally low, although it is considerably higher in the
Tropics; its spatial reproducibility also fluctuates in tandem with warm and cold phases
of the El Niño/Southern Oscillation phenomenon. However, the detailed sensitivities to initial
conditions depend somewhat on the land-surface process: pressure and temperature
anomalies exhibit the highest temporal reproducibilities, while hydrological and
turbulent flux anomalies show the highest spatial reproducibilities. Implications of
these results for model intercomparisons and seasonal forecasts are elaborated.
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1. Introduction

While the implications of initial-condition sensitivity (i.e. “chaos”) for the prediction

climate have been recognized for decades (e.g. Lorenz 1964, Leith 1973), practical investi

of this problem with general circulation models (GCMs) began much more recently (Chervin 1

Zwiers 1987). Moreover, only in the past few years has computer performance adva

sufficiently to permit routine generation of experimental ensembles for studies of clim

predictability on a range of time scales.

Cubasch et al. (1994), for example, showed that the multi-decadal climate simulated

synchronously coupled ocean-atmosphere model is sensitive to the initial conditions, an

revisited by Delworth and Knutson (2000) for transient global-warming experiments. Ba

(1995) noted that chaos is also a factor in “two-tier” experiments wherein the ocean and atmo

models are asynchronously coupled, and Hansen et al. (1997) documented its effects at an

decadal time scales in coupled climate-change simulations involving a mixed-layer ocean.

other investigators (a partial list includes Palmer and Anderson 1994, Dix and Hunt 1995, K

and Hoerling 1995, Stern and Miyakoda 1995, Bengtsson et al. 1996, Zwiers 1996, Carson

Zwiers and Kharin 1998, Wang and Zwiers 1999, Dirmeyer 2000, Koster et al. 2000, Shukla

2000, and Dirmeyer et al. 2001) have conclusively demonstrated that, even when ocean bo

conditions are prescribed, simulations of climate also are highly chaotic at seasonal time s

especially outside the Tropics.

However, many of these seasonal predictability studies have focussed on the dynamics

free atmosphere, rather than on the processes at the land surface, the chief locus of

interaction with the climate system. Even when continental processes were considered (e.g.

and Hunt 1995, Stern and Miyakoda 1995, Wang and Zwiers 1999, Koster et al. 2000, Dirm

2000), only a limited number of variables (e.g. precipitation and soil moisture) were investig

Thus, a more comprehensive assessment of the predictability of seasonal land-surface cli

called for, in light of the potentially huge societal ramifications.

It should be noted as well that the initial-condition sensitivity of continental climate

relevant for climate modeling activities that lie outside the sphere of predictability studiesper se.

The most clearcut examples include modeling experiments where chaos may confound atte

attribute model variations in simulated seasonal climates to differences in coupled land-s

schemes (e.g. Henderson-Sellers et al. 1996, Polcher 2000); but such issues are also germ

virtually all model intercomparison projects that consider land-surface processes. Hence, th

an overarching need to identify when and where continental climate simulations are likely

most “reproducible” in the context of variations in model initial conditions.
-1-
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In the present study, we infer the spatio-temporal reproducibility of a diverse collectio

seasonal land-surface variables from an ensemble of decadal climate simulations implemen

a version of the European Centre for Medium-Range Weather Forecasts (ECMWF) GCM

prescribed ocean boundary conditions. We consider the reproducibility of each land-su

variable when its climatological seasonal cycle is included or excluded--configurations tha

most pertinent, respectively, to model intercomparison projects and seasonal predictability s

In Section 2, we summarize the salient features of the ECMWF model version and o

experimental design, and in Section 3 we compare the simulated interannual variability a

observational analyses, as an indication of the model’s suitability for this study. In Section

apply some novel measures of spatio-temporal reproducibility to the selected land-su

variables, and in Section 5 we verify that these results are comparable to those obtained from

conventional metrics. Finally, in Section 6 we elaborate on the implications of this study for

model intercomparisons and seasonal forecasts.

2. Experimental Design

a. The model

For this study, we employed cycle 36 of the ECMWF atmospheric GCM, a version that

in operational use during the early 1990s. In this model, the atmospheric primitive equation

represented as truncated series of spherical harmonic basis functions, where nonlinear ter

many physical parameterizations are calculated on a Gaussian grid and then transformed

spectral space. In our experiments, the horizontal resolution was triangularly truncated at

number 42 (corresponding to a 64 x 128 Gaussian grid), and vertical differences were exp

on 19 unevenly spaced levels in hybrid sigma-pressure coordinates. For a surface pressure

hPa, the lowest prognostic level was at 996 hPa, and 5 levels were below 800 hPa.

The prognostic equations were solved semi-implicitly at a 30-minute time step, but

radiative fluxes (after Morcrette 1991) and clouds (after Slingo 1987) updated only every 3 h

Convection was formulated as in Tiedtke (1989). Dissipation was implemented as biharm

horizontal diffusion, stability-dependent second-order vertical diffusion, and orographic gra

wave drag is parameterized after Miller et al. (1989). In the surface layer, fluxes of momentum

and moisture were treated as in Louis (1979), with Miller et al. (1992) modifications of stab

dependent drag coefficients to enhance ocean surface evaporation for calm conditions.

Land-surface processes were parameterized after Blondin (1989). A vegetation c

occupying a variable fraction of each grid box intercepted a portion of the incident precipita

which subsequently evaporated at the potential rate. Transpiration of soil moisture was reg
-2-
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by a canopy resistance that depended on local radiation and moisture stresses, but not on ve

type. Evaporation and sublimation from the bare-soil and snow-covered fractions of each gr

also were treated.

Temperature and moisture were predicted by diffusion equations in top and middle soil l

(thickness 0.07 m and 0.42 m, respectively), but were prescribed from monthly climatologies

underlying deep layer. When the moisture capacity of the top soil layer (.02 m) was exceeded, s

runoff occurred; base flow resulted from overflow of the middle soil layer (moisture capacity

m). Further characteristics of the ECMWF (cycle 36) model are summarized by Phillips (1994

Several potential sources of chaotic behavior may be identified in such a land-su

scheme. First, the initial specification of soil temperature/moisture and snow cover can impa

scheme’s equilibrium state (Yang et al. 1995). The presence of canopy-intercepted precip

also tends to skew the variability of the surface evaporation toward higher frequencies (Scot

1997). Moreover, coupling this scheme to an atmospheric model that is also sensitive to

conditions is likely to accentuate the overall chaotic behavior of the system.

Some problematical aspects of this land-surface scheme for inferring the reproducibil

continental climate also should be mentioned. The most significant drawback is the use

climatological soil layer, which fails to ensure conservation of energy and moisture, since a zer

condition is not imposed at the lower boundary of the soil column. This and other shortcomings

as noted by Betts et al. 1993) have motivated revisions of the land-surface parameterizat

subsequent versions of the ECMWF model (Viterbo and Beljaars 1995, Beljaars et al. 1996).

b. The ensemble experiments

An ensemble of 6 decadal climate simulations were generated, where each realizatio

common ocean boundary conditions that included Atmospheric Model Intercomparison P

(AMIP) specifications of observed monthly sea surface temperatures (SSTs) and sea ice exte

the period 1 January 1979 to 31 December 1988 (Gates 1992, Gates et al. 1999). (These bo

conditions were updated daily by linear interpolation of contiguous monthly fields.) In addit

common AMIP values of the solar constant(1365Wm-2)and the carbon dioxide concentration (34

ppm) were specified.

The nominal start time of each realization was also the same (00 GMT on 1 January 1

but the initial conditions of atmosphere and land differed. For the first realization, the in

conditions were specified from the ECMWF observational analysis for 00 GMT on 15 Jan

1979 (taken as the effective date of the monthly mean January 1979 AMIP SST and s

extents). For each of the 5 companion realizations, a different initial state that also
-3-
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representative of January climate was imposed, for example, by specifying the initial cond

(at 00 GMT on 1 January 1979) for a new simulation to be the same as the state at the last tim

(i.e., at 23:30 GMT on 31 December 1988) of a companion simulation.

3. The Simulated Surface Climate

a. Model data

For each decadal realization, we computed time series of 120 monthly averages of 11

“standard output variables” (Gates 1992) that provided a fairly comprehensive portrait o

simulated surface climate (Table 1). We also calculated time series of the seasonal averages

variables, i.e. for each sample of March-April-May (MAM), June-July-August (JJA), September-

October-November (SON), and December-January-February (DJF) climates. (Owing to the simula-

tion start date on 1 January 1979, only 9 samples of DJF climates were available, resulting in

series of 39 seasonal samples per decadal realization.)

As expected, these seasonal averages were less sensitive to initial conditions than w

monthly means, since longer time-averaging filters out more of the climate noise engendered

chaotic daily weather systems (Leith 1973, Barnston 1994). Averaging over periods longer

season would further decrease the level of climate noise (Ebisuzaki 1995, Chen and van den Doo

but at the expense of reducing the number of samples available from the decadal simulations. W

limited our analysis to seasonal time scales.

b. Validation of model variability

The accuracy to which the reproducibility of seasonal land-surface climate can be estim

from ensemble experiments depends on how well the model reproduces the observed inte

variability (Kumar et al. 1996, Sperber and Palmer 1996, Liang et al. 1997). Hence,

preliminary check of the model, we compare the seasonal interannual variability of 3 key sea

variables--sea-level pressure (psl), surface air temperature (tas), and precipitation (pr )--against the

corresponding NCEP-NCAR reanalysis products over the 1979-1988 decade (Kalnay et al.

(For reasons that will become clearer in Section 5, our choice of the NCEP-NCAR reanalysi

model validation reference is primarily because it provides a comprehensive and self-cons

picture of surface climate variability during the AMIP period 1979-1988, and not necess

because it affords the “best” estimate of variability for any single process.)

Comparison maps are shown for JJA and DJF in Figures 1-3. From Figure 1, it is see

the simulated interannual variability of sea-level pressure is generally in good agreement w
-4-
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reanalysis. The chief discrepancies include too little variability near Antarctica in JJA (Figur

vs 1b) and over the Northern Atlantic/European sector inDJF (Figure 1c vs 1d).

For surface air temperature in JJA, the centers of variability are about the same magnit

in the reanalysis, although their position and extent are somewhat different (Figure 2a vs 2

DJF,however, the model’s variability is systematically lower than that of the reanalysis ove

Northern continents (Figure 2c vs 2d).

The magnitude and pattern of the model’s precipitation variability is quite similar to that o

reanalysis in midlatitudes, especially in JJA (Figure 3a vs 3b); however, the simulated variab

generally too large over the tropical oceans, as well as over southern Asia during JJA. He

discrepancies may largely reflect the different convective schemes of the ECMWF and N

reanalysis models (Tiedtke 1989, Pan and Wu 1994).

In summary, the ECMWF model seems to produce a generally credible simulation o

interannual variability of these key surface variables, especially over land. However, there are

apparent shortcomings in simulating details of this variability in certain regions and seasons

4. Reproducibility of Model Land-Surface Variables

a. Measures of spatio-temporal reproducibility

To quantify the spatio-temporal reproducibility of a variableV, we compute temporal and

spatial (pattern) correlations between all the independent pairs of realizations that are av

from the ensemble (Santer 1988). That is, at each grid point (i, j) we calculate zero-lag tem

correlationsr  between each independent pair (l, m) of realizations ofV:

K

r (i, j, l, m) =Σ {V(i, j, k, l) - V(i, j, l)} *{ V(i, j, k, m) -V(i, j, m)}/{K *σt (i, j, l)*σt (i, j, m)}
k

HereV denotes the time average ofV andσt is its temporal standard deviation; the summation is ov

all K = 39 seasonal samples k in a decadal realization. As a measure of the spatial reproducib

each seasonal sample k, we compute pattern correlationss between each independent pair (l, m) o

realizations ofV:

I x J

s(k, l, m) =Σ {V(i, j, k, l) - [V(k, l)]} *{ V(i, j, k, m) - [V(k, m)]}/{(I x J) *σs (k, l)*σs (k, m)}
i,j

Here [V] denotes the spatial average ofV andσs is its spatial standard deviation; the summation

over the total number I x J of surface grid points (i,j) for the chosen 64 x 128 Gaussian grid, or ~

grid points when only land surfaces are considered.
-5-
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For an ensemble of n model experiments, the number N of independent pairs (l,m

realizations is given by

N = n!/{2!(n-2)!}

In our study, the ensemble of n = 6 realizations yields N = 15samples ofr ands, thereby capturing

essentially all the available information on the spatio-temporal reproducibility ofV. As an overall

measure of reproducibility, we calculate the meanµ and the scatterδ among these N samples. Fo

example, in the case of measurer ,

N

µ{r(i,j)} = Σ r(i,j,l,m)/ N
l, m

N

δ{r(i,j)} = { Σ (r(i,j,l,m) - µ{r(i,j)}) 2 / N } 1/2

l , m

b. Reproducibility of the seasonal variables

We first consider a surface variable that includes the seasonal cycle--common pract

climate model intercomparison projects. In this context,r and s essentially measure the

reproducibility of the variable’s seasonal cycle, which accounts for nearly all of the sp

temporal variance about the decadal mean.

Temporal reproducibility

As an example of the temporal reproducibility of a model variable, maps ofµ{r (i, j)} andδ{r( i, j)}

for the simulated seasonal precipitation are shown in Figure 4. These display some pronounced la

asymmetries: the highest mean correlationsµ{r (i,j)} > 0.9 occur in the Tropics, where barotropi

atmospheric dynamics tend to mitigate against chaotic fluctuations. Here, the high-correlation

include continental regions in Amazonia, equatorial Africa, and southeast Asia. However, at most

tropical locations where baroclinic dynamics prevail,µ{r (i, j)} < 0.7, implying that one realization of ex

tratropical seasonal precipitation typically explains less than half the temporal variance of anot

general, the cross-realization scatterδ{r( i,j)} also is substantially higher outside the Tropics. (Th

measure is not meaningful, however, where precipitation is scant, such as in northern Africa.)

ocean-land contrasts in the temporal reproducibility of model precipitation also are evident even

deep Tropics: mean correlationsµ{r (i, j)} exceeding 0.9 cover broad swaths of the equatorial Atlan

and Pacific, but only portions of the adjacent continents.
-6-
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An aggregate measure of the continental temporal reproducibility of the seasonal cy

model surface variableV is provided by the spatial averageR of each sample of the cross-realizatio

correlationr (i, j) over all land points. The meanµ{R} and scatterδ{R} among the N = 15realizations

of each seasonal land-surface variable are depicted in Figure 5a. The temporal reproducibility

land-surface variables ranges rather widely, with the ground and surface air temperatures (tg andtas)

showing the highest values ofµ{R} , and precipitation (pr) the lowest. While the intraensemble scatt

δ{R} (gray bars) is comparatively small for all the land-surface variables, it also tends to increa

µ{R} decreases. Thus, these summary statistics present a consistent picture of the varia

temporal reproducibility displayed by model land-surface variables that include the seasonal 

In Figure 5b, theµ{R} andδ{R} statistics are displayed for monthly mean samples of the sa

land-surface variables with the annual cycle included. As mentioned in Section 3a, the monthly

surface variables all exhibit somewhat less temporal reproducibility than at the seasonal time

(Figure 5a), owing to the comparatively greater sensitivity of the monthly statistics to varying in

conditions. This behavior appears to be especially pronounced for land-surface precipitation pr ).

Spatial reproducibility

The spatial reproducibility of simulated land-surface variables that include the sea

cycle, as exemplified by the variation of the mean cross-realization pattern correlationµ{ s(k)} for

precipitation, shows substantial variation with season k (Figure 6). Over land,µ{ s(k)} displays a

pronounced sawtooth fluctuation each year (Figures 6b, 6c), with maxima repeatedly occurr

JJA and DJF and minima in MAM and SON. (The modest scatterδ{s(k)} indicates that each

realization shows a similar tendency for maximum spatial reproducibility in the extreme seas

Sawtooth fluctuations also characterize theµ{ s(k)} time series for global precipitation (Figure 6a)

except in 1983 and 1987 when this pattern is disrupted, possibly related to incidences of El

in these years (see Section 4c). In addition, some interannual modulation of the amplitu

µ{ s(k)} can be seen for both global and continental precipitation, but the average pa

correlation is greatest for tropical land points (Figure 6c).

Time series ofµ{ s(k)} exhibit the same behavior for all the other land-surface variab

except soil moisture, which instead peaks in MAM and SON each year (not sho

Nonetheless, it is physically reasonable that the time series of this storage variable should

quadrature with that of precipitation, signifying soil moisture’s potential as a predicto

seasonal climate (e.g. Huang et al. 1996).
-7-
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Spatial reproducibility of seasonal climatologies

Because model intercomparison projects often are limited to analysis of single realizatio

participating models’ climates, it is relevant to consider the reproducibility of the ECMWF sur

variables’ seasonal climatologies (i.e., the decadal-mean MAM, JJA, SON, and DJF climates

did so by computing the mean and scatter of the spatial pattern correlations between the N

independent pairs of realizations of the seasonal climatology of a surface variableV that were

available. For all variables and seasons, the resulting mean correlations were ~ 1, and their

less than ~ 0.03. We conclude that the intercomparison of single realizations of seasonal s

climatologies from a collection of GCMswith common ocean boundary conditions and radiati

forcings is indeed likely to be a meaningful exercise.

c. Reproducibility of seasonal anomalies

From the standpoint of seasonal prediction, it is the reproducibility of thedeparturesof

surface variableV from its climatological seasonal cycle which is of interest. That is, the stat

V in a particular season is assumed predictable to the extent that its seasonal anoma

reproducible; otherwise, the seasonal climatology offers a better prediction. However, becau

ECMWF model’s ocean state is not prognostically determined, these reproducibility mea

allow only the inference of a variable’s potential predictability (hereafter,PP), a presumed upper

bound on the operational forecast skill (Madden 1981)

Thus, to infer thePP of seasonal surface variableV we remove the ten-year climatologica

seasonal cycle from its time series, and then compute the cross-correlationsr andsof the resulting

seasonal anomalyA for each independent pair of realizations. As summary measures, we a

also calculateµ andδ statistics from the N = 15 independent samples ofr  and s.

Temporal reproducibility of seasonal anomalies

As examples of this procedure, maps of the mean cross-realization correlationµ{r (i,j)} and

its scatterδ{r( i,j)} for seasonal anomalies of surface air temperature are displayed in Figu

Given the prescribed ocean state, it is not surprising that the anomalies of marine surface a

perature show good temporal reproducibility (i.e., highµ{r (i,j)} and low δ{r( i,j)}). There also

are a few continental locations--e.g. parts of Amazonia, equatorial Africa, and southeast A

where the temporal reproducibility is comparatively high. However, over most of the

surface each realization explains, on average, less than 25% of the interannual varia

another (i.e.µ{r (i,j)} < 0.5); moreover, the cross-realization scatterδ{r( i,j)} mostly exceeds 0.1.

A qualitatively similar pattern is displayed by the anomalies of ground temperature and o
-8-



del's

a few

itation,

ble heat

dies of

s of

an

tralia.

ies.

le is

el

the

scatter

and

l-

patial

many
net fluxes of surface shortwave and longwave radiation (not shown). Apparently the mo

radiative/thermal anomalies are temporally reproducible to a substantial extent at only

continental locations in the deep Tropics.

This assessment is even more appropriate for the seasonal anomalies of continental precip

which display generally lower values ofµ{r (i,j)} and higher values ofδ{r( i,j)} (Figure 8). Other

hydrological variables (e.g. surface evaporation and soil moisture), as well as the surface sensi

flux, exhibit similar behaviors (not shown). These results also are in general agreement with stu

PP of a more limited set of land-surface variables in other models (e.g. Dirmeyer et al. 2001).

More geographically widespread temporal reproducibility is evinced by the anomalie

continental sea-level pressure (Figure 9):µ{r (i,j)} values in excess of 0.3 extend farther poleward th

for any other surface field considered, e.g. to western North America and northern parts of Aus

The cross-realization scatterδ{r( i,j)} also is generally less than that for other land-surface anomal

An overall summary of the temporal reproducibility of each land-surface anomaly variab

provided by the meanµ{R} and scatterδ{R} for land-averagesR of r (i,j), which are depicted in

Figure 10. The highest all-land mean correlationsµ{R} are displayed by the anomalies of sea-lev

pressure (psl), surface air temperature (tas), and ground temperature (tg), and the lowest correlations

by the anomalies of surface evaporation (evs), precipitation (pr ), and sensible heat flux (hfls). All-

land values ofµ{R} are generally much lower for the anomalies of Figure 10a than for

corresponding surface variables which include the seasonal cycle (Figure 5a). The all-land

δ{R} of the anomalies (gray bars) in Figure 10a is also a larger fraction ofµ{R} than in Figure 5a,

especially for the precipitation (pr ), evaporation (evs), and sensible heat flux (hfls). The relative

positions of the surface anomalies in descending order of their all-landµ{R} also differ in Figures 10a

versus 5a, with the greatest dissimilarities being displayed by sea-level pressure (psl).

For every model surface anomaly, however, the tropical-land averageµ{R} is substantially

higher, and its scatterδ{R} lower, than the corresponding all-land statistics (compare Figures 10a

10b). Especially noteworthy are the sea-level pressure (psl) and surface air temperature (tas), whose

tropical-landµ{R} exceed 0.40 with low scatterδ{R} . On the other hand, the relatively low tropica

landµ{R} and highδ{R} of precipitation (pr), soil moisture (mrso), and surface evaporation (evs) is

discouraging, in view of the socio-economic import of these hydrological variables.

Spatial reproducibility of seasonal anomalies

The time series of mean cross-realization pattern correlationµ{ s(k)} for anomalies of

precipitation (Figure 11) and sea-level pressure (Figure 12) bracket the range of s

reproducibilities exhibited by the model’s seasonal surface variables. For instance, there are
-9-
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seasons k whenµ{s(k)} for the global precipitation anomalies is > 0.5 (Figure 11a), but only a f

cases of comparable mean pattern correlations for the pressure anomalies (Figure 12a). Th

is much less scatterδ{s(k)} in the time series of the precipitation anomalies (compare separatio

dashed and solid lines in Figures 11 and 12), apparently because their spatial patterns ar

consistent across realizations than those of the pressure anomalies.

However, the spatial reproducibility of the precipitation anomalies is substantially red

over land (compare Figures 11a and 11b), especially in middle and high latitudes (compare F

11b and 11c). The continental sea-level pressure anomalies also are much less spatially repro

outside the Tropics (compare Figures 12b and 12c); however, in contrast to global precip

(Figure 11a), theµ{s(k)} of the pressure anomalies increase only marginally when ocean point

included in the calculations (compare Figures 12a and 12b). (A selective comparison of maps

six realizations of sea-level pressure anomalies at particular years/seasons indicated that

differences were especially pronounced in polar latitudes.)

From Figures 11 and 12, it is evident that the spatial reproducibility of the seasonal anom

fluctuates markedly in time. The largest peaks inµ{s(k)} coincide with occurrences of El Niños in

1982/83 and 1986/87; in some cases, smaller peaks occur at times of La Niñas in 1984/85 (F

11a and 11c) and in the latter part of 1988 (Figures 11a and 12c). At such times, the reproduc

of the continental anomalies is more pronounced in the Tropics (Figures 11c and 12c),

substantial extratropical signal in MAM 1983 is associated with the exceptionally intense 198

El Niño (Figures 11b and 12b). Other investigators (e.g., Brankovic et al. 1994, Anderson

Stern 1996, Bengtsson et al. 1996, Zwiers 1996) also have noted a propensity for g

predictability to peak in the MAM season following onset of an El Niño in the latter part of

previous year. The timing is thought to be related to the maximal extent of tropical SSTs exce

28 deg C (a threshold for convection), and a dynamical basic state that expedites tro

extratropical interactions (Hoerling et al. 1995, Higgins and Halpert 1997, Sud et al. 1999).

Figure 13 displays the MAM 1983 ensemble-mean anomaly fields (averaged across the 6

realizations) of sea-level pressure, surface air temperature, and precipitation. Shaded areas

where these anomalies are significantly different (at the 95% confidence level) from other M

seasons in years without El Niños--that is, in all other years of the simulation decade except 198

significance test utilizes a nonparameteric Kolmogorov-Smirnov statistic that is especially suit

non-Gaussian variables such as precipitation--see Anderson and Stern 1996.)

Several significant anomalies commonly associated with El Niños (e.g. Quiroz 1

Ropelewski and Halpert 1987, Barnett 1988, Kiladis and Diaz 1989, Kane 1997) are present in

13. These include pronounced Southern Oscillation and North Pacific pressure anomalies (

13a); anomalous warming of tropical continents and of northern/western North America, with co
-10-
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of boreal continental interiors (Figure 13b); and abnormally wet/dry conditions in the eastern/we

tropical Pacific (Figure 13c). (The canonical precipitation anomaly centered in the southeaster

during El Niños is more evident in the analogous map for the preceding DJF season, not shown

The temperature anomalies (Figure 13b) are most widespread over the extratropical continents,

precipitation anomalies (Figure 13c) are least so, but the latter are more extensive in this seas

is the model norm (e.g. Figure 8).

Figure 14 depicts the overall spatial reproducibility of the model land-surface anoma

Summary statistics include the mean and scatterµ{S} andδ{S} of the time-averageSof the series

of cross-realization pattern correlations s(k), season k = 1, ..., 39, that are computed alternativel

over all-land (Figure 14a) and tropical-land points (Figure 14b). The mean and scatterµ{M} and

δ{M }in the maximumM of each all-land and tropical-land time seriess(k) also is displayed in

Figures 15a and 15b, respectively.

In contrast to their relatively high temporal reproducibility (Figure 10a), the all-land sea-l

pressure(psl) anomalies exhibit the least spatial reproducibility (lowestµ{S} and highestδ{S}) of

any surface variable (Figure 14a). The ground and surface air temperature anomalies (tg and tas)

display similar tendencies; conversely, anomalies of precipitation (pr ), evaporation (evs), and

sensible heat flux (hfss) show relatively high spatial reproducibility, but low temporal

reproducibility. This apparent spatio-temporal asymmetry may be physically based (e.g. indi

that the continentalpr , evs, andhfssanomalies are more likely to occur in certain locations), or

least may be indicative of present-day GCM land-surface simulations (e.g. Phillips et al. 2

However, this asymmetry also may partly reflect differences in statistical sampling, in thatR is a

spatial average over several thousand grid points, whileS is a temporal average over just 39 season

samples. BecauseR thus is likely to be more statistically robust thanS, the summary information in

Figure 10 probably should be emphasized over that of Figure 14 for purposes of ranking the o

reproducibility of the model’s land-surface anomalies. (Nonetheless, if these preliminary indica

of higher spatial reproducibility of the hydrological variables and turbulent fluxes are borne o

other predictability studies, this could have considerable utility in operational seasonal foreca

From a comparison ofµ{S} andδ{S}over only tropical land points (Figure 14b), it is seen th

the relatively low all-land spatial reproducibility of certain model anomalies mainly owes to t

behavior over extratropical continents. This tropical-extratropical asymmetry in pattern correla

is especially striking for the sea-level pressure (psl) anomaly, but is also clearcut for soil moistur

mrso, radiant fluxesrss and rls, and surface wind stressestauu and tauv. Similarly, the mean

maximaµ{M} of the tropical-lands(k) time series (Figure 15b) are substantially higher than th

for all-land points (Figure 15a). Nonetheless, the timing ofµ{M} for most anomalies coincides with
-11-
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the intense 1982/83 El Niño (designated by bracketed anomaly labels in Figures 15a,b), irresp

of whether the pattern correlations include all-land or only tropical-land points.

5. Comparisons With Conventional Measures of Predictability

The mean correlationsµ{ r (i,j)} andµ{ s(k)} are likely to be comparatively robust measures

reproducibility since, for the given ensemble size n = 6, they are derived from N = 15independent

samples ofr ands. However,r ands themselves are computed from gridded seasonal data tha

not statistically independent, since they are serially/spatially correlated with data at neighb

seasons and grid points. This complicates the estimation of threshold values ofr or s that would

signify the likely presence ofPP. Although such thresholds could be empirically determined,

example by use of resampling techniques, the resulting criteria would be variable-specific

Livezey and Chen 1983). As an alternative, we will show that inferences ofPP based onr ands

compare well with conventional measures of predictability having more clearcut thresholds.

Here we present the results of applying two such measures: a fractional variance staf

and a forecast skill scorec derived from the spatial pattern correlation of simulated vs. obser

anomalies. Note, however, that these metrics both are obtained at the cost of reducing the e

sample size from N = 15 to n = 6 .

a. Fractional variance measure

The fractional variance measuref is an estimate of the portion of the total variabilityσT
2 of

climate variableV that is attributable to the ocean boundary forcingσB
2, as opposed to the interna

variability σI
2 that is assumed to be unpredictable (Madden 1981):

f = σB
2/σT

2

 where

σT
2= σB

2+ σI
2

In this framework, a conservative threshold that implies the likely presence ofPPisσB
2>σI

2, orf > 0.5.

Analogous to the temporal reproducibilityr , the statisticf is computed at each grid point (i, j); in

addition,f usually is determined as a function of climatological seasonτ (i.e. MAM, JJA, SON, and

DJF), thereby allowing investigation of putative seasonal variations inPP.
-12-
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Following Kumar and Hoerling (1995), we estimatedσB
2 from the ensemble-mean interan

nual variability ofV in seasonτ, andσI
2 from the intraensemble variability of the different mode

realizations of seasonτ, where in both cases the sample size is n = 6. Maps off (Figure 16) suggest

that the inferredPPof the model’s sea-level pressure displays greater extratropical extent tha

of other land-surface variables, notably over western North America during JJA and over Aus

during DJF. The surface air temperature also exhibit apparentPP over parts of North America in

MAM (Figure 17), a pattern reminiscent of what Zwiers (1996) reported for the 850 hPa tem

ture field in another model. More typical of the land-surface variables, however, are the mapf

for precipitation (not shown), which show very little evidence ofPP outside the deep Tropics

Thus, inferences ofPP derived fromf are very similar to those determined from the tempo

reproducibility statisticr  (see Figures 7-9)

b. Forecast skill measure

In operational forecasting, a common measure of predictive skill is the spatial pa

correlationc of the simulation with observational estimates. For each of the k = 39 seasons

AMIP decade, we computed the pattern correlationc(k) of the ensemble-mean anomalyA of each

surface variable against a single realization of the observed anomaly, as approximated by N

NCAR reanalysis data (Kalnay et al. 1996) over the same time period. (The ensemble-

anomaly being the most likely prediction of the observed climate.) Following Zwiers (1996)

also estimated the uncertainty inc(k) as the average scatter among the correlations of th

realizations ofA with the reanalysis.

Plots ofc(k) and its average scatter are displayed for sea-level pressure and precipitat

Figures 18 and 19, respectively. The thresholdc(k)=0.50 (denoted by dot-dash lines in thes

figures) indicates a minimum level of effective forecast skill, in the sense that the prediction

be of some practical value (Kumar and Hoerling 1995). By this criterion, effectively skil

seasonal forecasts of both global and all-land sea-level pressure occur in only a few seasons

the AMIP decade (Figures 18a, b). The prediction of continental pressure is more frequently

ful in the Tropics, sometimes for several seasons in a row (Figure 18c), but even here there ar

inter-seasonal swings inc(k), with a number of negative-valued correlations. (Thec(k) skill

statistic is known to be quite “unforgiving”, often yielding negative values.) Thec(k) for global

precipitation are all positive-valued, but there is only a single instance of an effectively sk

forecast (Figure 19a). There are no effectively skillful predictions of continental precipita

however, even when evaluation is limited to the Tropics (Figure 19b, c).
-13-
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The contrast between the more frequently skillful but “erratic” pressure correlations and th

skillful but “consistent” precipitation correlations is captured by the time-meanC and the maximum

M of the respective time seriesc(k). The all-land and tropical-land values ofC, together with its

estimated uncertainty is displayed for the 11 model surface anomalies in Figures 20a and b, wh

corresponding maximaM are shown in Figures 21a and b. It is seen that the all-landc(k) time series

for the sea-level pressure (psl) anomaly exhibits the lowest meanC, but the highest maximumM

(Figures 21a and b, respectively). The uncertainty in all-landC for the psl anomaly is also

comparatively very large, especially relative to the magnitude ofC (Figure 20a). In contrast, the all-

landc(k) series for the precipitation (pr ) anomaly has a low maximumM , but the highest meanC,

along with a relatively low uncertainty. These results are reminiscent of the summary statist

spatial reproducibility of the surface anomalies in Figure 14, where the all-land meanµ{S} of the

time seriess(k) is largest for precipitation and smallest for sea-level pressure, and where th

substantially more scatterδ{S} in the latter case.

In Figure 20a, the all-landC statistics for precipitation and sea-level pressure bracket the rang

values for theother surface anomalies: relatively highC values are displayed by soil moisture (mrso) and

the net shortwave/longwave radiative fluxes (rss/rls), relatively low values by the northward wind stres

(tauv) and ground temperature (tg), and intermediate values by the remainder of the anomalies. T

also is a sharper differentiation in the all-landM statistics among the surface anomalies (Figure 21

besidespsl, only the ground and surface air temperatures (tg andtas) show evidence of effective forecas

skill (M > 0.50).

Over the tropical continents,C increases from its all-land value for every surface anom

(compare Figures 20a and b). The increase is proportionately greater for ground and surf

temperatures (tg and tas), for the surface wind stresses (tauu and tauv), and especially for sea-

level pressure (psl), whereC shifts from the lowest all-land value to the highest tropical-land val

For most land-surface anomalies, the maximumM of the tropical-landc(k) time series (Figure

21b) also exceeds its all-land value (Figure 21a), butM > 0.50 only for the tropical-landtas, tauu,

andpsl anomalies.

It is also noteworthy that the relative ranking of the all-land anomalies in Figure 20a

descending order of all-landC values) roughly corresponds to that derived from the all-landµ{ S}

values of Figure 14a. However, the impact of the 1982/83 El Niño on the maximaM of the land-

surface correlationsc(k) is reduced (compare the number of bracketed anomaly labels in Fig

15a,b versus Figures 21a,b): it is limited mainly to precipitation (pr ) and soil moisture (mrso). (The

maximaM of the c(k) time series of other land-surface variables occur in various seasons/y

only some of which correspond to ENSO events. )
-14-
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The contrasting behaviors illustrated by Figures 14/15 versus Figures 20/21 highligh

differences between predictability statistics that are model-dependent (e.g.r , R, s, S,andf) and

those more demanding metrics that reference validation data external to the model (e.g.c, C, and

M ). However, to attribute the causes of all the differences between Figures 14/15 and F

20/21 to model shortcomings seems quite unjustified, especially for land-surface processe

as turbulent fluxes and soil moisture that are mainly determined by the parameterizations

reanalysis model, or that may be biased by the particular assimilation/nudging techn

employed (M. Kanamitsu, personal communication). It should be acknowledged as wel

validation of model predictions against observations is an inherently probabilistic exercise,

nature only provides a single realization of the observed climate, which need not correspo

the ensemble-mean state of even a hypothetically “perfect” model.

6. Discussion

In this study we have analyzed the initial-condition sensitivity of 11 seasonal surface vari

in an ensemble of 6 ECMWF (cycle 36) model simulations of decadal climate, with com

specification of AMIP radiative and ocean boundary conditions. To quantify this sensitivity

computed spatio-temporal measures of intraensemble reproducibility, with particular attent

their values at the land surface. We considered the reproducibility of the surface variables wh

seasonal cycle was included or excluded, since the former configuration is relevant for m

intercomparison projects, and the latter for seasonal climate forecasts. Here we elaborate p

ramifications of our study for both these endeavors.

a. Implications for model intercomparisons

Because chaos complicates the analysis of a climate simulation, it is well to focus a m

intercomparison project on variables that display low sensitivity to initial conditions.

reproducibility measures indicate this to be the case for most land-surface variables that inclu

seasonal cycle, with the possible exception of precipitation and surface wind stresses. However,

year seasonalclimatologiesof even these highly chaotic variables proved to be spatially reproducib

a very great degree. This suggests that the comparison of seasonal land-surface climatologie

different atmospheric GCMs is likely to be a meaningful exercise,provided that common radiative

and ocean boundary conditions are specified, such as in the AMIP experiments.(The

intercomparison of models’monthlyclimatologies seems somewhat more problematical, howeve

view of their greater sensitivity to initial conditions.)
-15-
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A more fundamental problem for intercomparison projects focussing on the effects of diff

coupled land-surface schemes is that simulations of continental climate reflect the biases

atmospheric models’ surface forcings (e.g. net radiation or precipitation), thus making it difficu

assess the degree to which the different embedded land-surface schemes influence the sim

In principle, the effects of these biases could be reduced by intercomparing the models’ land-s

anomalies (i.e. the departures from the respective seasonal cycles). However, our study sho

to be an inadequate general strategy for single realizations of each model’s climate, given the

chaotic behavior of these anomalies outside the deep Tropics.

Such an approach would only be effective if multiple realizations of seasonal land-su

climate were available for each model, so that the reproducible part of each anomaly cou

estimated from its ensemble mean; however, many realizations probably would be needed

accurate estimate of this type (Barnett 1995, Wehner 2000). Because such a computat

intensive model intercomparison project is still rather impractical, other methods fora posteriori

reduction of the effects of model biases in single realizations need to be explored. For examp

potentially promising approach is to construct dimensionless ratios of response/forcing variab

elucidate essentially different behaviors of coupled land-surface schemes (Gedney et al. 20

b. Implications for seasonal forecasting

In this study we also inferred the potential predictability (PP) of the ECMWF model’s land-

surface climate by computing measures of the spatio-temporal reproducibility of the sea

anomalies of like variables in the ensemble. There was a considerable range in the o

predictability of the model’s land-surface processes, with continental surface pressure

temperature exhibiting generally higherPP than the hydrological variables or the turbulent fluxe

however, there were preliminary indications that the spatial pattern of the latter processes m

somewhat more predictable than that of the former. Surface pressure and temperatur

manifestedPP over the extratropical continents, albeit only in selected regions and season

Figures 16 and 17). The overallPP of the model’s seasonal continental climate was rea

substantial only in the deep Tropics, however. These results were consistent with those imp

more conventional predictability measures.

ThePP of the simulated seasonal continental climate also was perceptibly enhanced d

ENSO events, in particular the intense 1982/83 El Niño. However, the ENSO teleconnectio

not as evident when the predictions of the ECMWF model were compared against an indepe

validation reference such as the NCEP-NCAR reanalysis data: in this context, the relations

the ENSO to the model’s continental climate seemed quite tenuous outside the Tropics.
-16-
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These rather sobering implications for the potential predictability of extratropical contine

climate from SSTs alone need to be tempered by consideration of several means for enh

seasonal forecast skill. First, in contrast to our experiments, operational seasonal predictions

proceed from initial conditions specified from the observed atmospheric state (e.g. as provid

analysis products), so that some additional predictive skill may be imparted by atmosp

persistence, at least in the earlier stages of the seasonal forecast (e.g. Dirmeyer et al. 2001

There is also considerable evidence (e.g. Huang et al. 1996, Wang and Kumar 1998, Coh

Entekhabi 1998, Ferranti et al. 1999, Koster et al. 2000, Dirmeyer 2000) that seasonal predictiv

can be enhanced by accurate specification of other sources of climate memory such as sno

and soil moisture (where the latter is treated as a predictor variable rather than a predictand, a

study). Additional knowledge of the ocean state (other than provided by SSTs) also may yie

enhanced set of seasonal climate predictors (e.g. Phillips 1992, Griffies and Bryan 1997). Pr

on these fronts no doubt will be closely tied to integrated remote sensing and modeling initi

promoted by the World Climate Research Programme and similar international collaborations

Seasonal predictions also may be enhanced by intelligent use of statistical forec

techniques: because the land-surface variables are correlated, skillful dynamical foreca

selected fields can impart statistical knowledge of others (Barnston and Smith 1996). Enh

forecast skill may also be realized by reducing systematic model errors through statistical corr

techniques (Smith and Livezey 1999, Feddersen et al. 1999), by combining dynamical and sta

forecasting techniques (Anderson et al. 1999), or by utilizing ensemble forecasts from more

one model (Mason et al. 1999).

Finally, we reiterate that the predictability of land-surface climate is partly a function of m

performance (Kumar et al. 1996, Sperber and Palmer 1996, Liang et al. 1997, Zwiers and K

1998, Sperber et al. 1999). Hence, with future advances in computer technology facili

increasingly realistic simulations of continental processes, there is reason to anticipate sub

further progress in our ability to predict seasonal land-surface climate.
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Table 1: Surface variables considered in this study, listed in alphabetical order of their AMIP acronym, with units.

* Temperature of the lowest vertical level of the model atmosphere atσ = 0.996, equivalent to a height ~ 30 meters above
the surface.

** Equivalent to the surface skin temperature.

Surface Variable AMIP Acronym Units

Evaporation evs mm day-1

Sensible Heat Flux hfss W m-2

Soil Moisture mrso cm

Precipitation pr mm day-1

Sea-level Pressure psl hPa

Net Longwave Radiation rls W m-2

Net Shortwave Radiation rss W m-2

Surface Air Temperature* tas deg C

Eastward Wind Stress tauu Nt m-2

Northward Wind Stress tauv Nt m-2

Ground Temperature** tg deg C
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Figure 1: Maps of the interannual variance of JJA mean sea-level pressure, a) as simulated b

reanalysis data; and maps of the interannual variance of DJF mean sea-level pressure, c) as sim

the variances in a) and c) are calculated over 6 simulated realizations of the seasonal climates of

realization of the reanalysis climate over the same period.
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Figure 2: As in Figure 1, except for surface air temperature. Units are (deg C)2 .
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Figure 3: As in Figure 1, except for precipitation. Units are (mm day-1)2
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Figure 4: Maps of a) the meanµ[r (i, j)] of zero-lag temporal cross-correlationsr (i, j) for seasonal precipitation as

simulated for the AMIP decade by the ECMWF (cycle 36) model, and b) the associated cross-correlation

δ[r (i, j)]. The statisticsµ andδ are determined from N=15 independent pairings of decadal seasonal realiza

with the seasonal cycle included.
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Figure 5: The meanµ{R} (dark bars) and scatterδ{R} (low-valued gray bars) of temporal correlationsR over all land

points are shown for 11 ECMWF model surface variables (see Table 1 for acronym definitions), where in

variables include the seasonal cycle (i.e. time series of MAM, JJA, SON, and DJF means), while those in b) inclu

annual cycle of monthly means. In both cases, theR statistics are computed from N=15 independent realizations of

temporal cross-correlationsr (i,j), and the surface variables are arrayed from left to right in descending order of

µ{R} values. As arbitrary common references in a) and b), the dashed horizontal lines indicate correlation/scatte

of 0.8.
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Figure 6: Time series of the meanµ[s(k)] of spatial pattern cross-correlations for seasonal precipitation as simulated fo

AMIP decade by the ECMWF (cycle 36) model (solid lines) and the associated cross-correlation scatterδ[s(k)] (dashed

lines). The statisticsµ andδ are determined from N=15 independent pairings of decadal seasonal realizations wi

seasonal cycle included. The time series includes 39 seasonal samples k, the first for the MAM 1979 season, and th

the SON 1988 season. As arbitrary common references, the dashed horizontal lines indicate spatial pattern correlati

of 0.8. In a) the pattern correlations are computed globally, in b) they are computed over land points only, and in

tropical land points only (30 S to 30 N).
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Figure 7: Map a) of the meanµ[r(i, j)] of zero-lag temporal cross-correlationsr( i,j) for seasonal anomalies (i.e. excludin

the seasonal cycle) of surface air temperature, as simulated for the AMIP decade by the ECMWF (cycle 36) model, a

b) of the associated intraensemble scatterδ[r(i, j)]. The statisticsµ andδ are determined from N=15 independent cros

correlations of decadal realizations of these anomalies.
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Figure 8: As in Figure 7, except for seasonal anomalies of precipitation.

-1

0.3

0.5

0.7

1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-90

-70

-50

-30

-10

10

30

50

70

90
a)

b)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
-90

-70

-50

-30

-10

10

30

50

70

90

0

0.05

0.1

0.2

0.5



Figure 9: As in Figure 7, except for seasonal anomalies of mean sea-level pressure.
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Figure 10: The meanµ{R} (dark bars) and scatterδ{R} (gray bars) of land-average temporal cross-correlationsR for

11 seasonally averaged ECMWF model surface anomalies (see Table 1 for acronym definitions) are shown,

correlations over all land points, and in b) for correlations only over tropical (30 S to 30 N) land points. In both c

the R statistics are computed from N=15 independent realizations of the temporal cross-correlationsr (i,j), and the

surface anomalies are arrayed from left to right in descending order of their all-landµ{R} values. As arbitrary common

references in a) and b), the dashed horizontal lines indicate mean correlation/scatter values of 0.2.
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Figure 11: Time series of the meanµ{s(k)} of spatial pattern cross-correlationss(k) for seasonal anomalies of

precipitation (in blue), and the associated scatterδ{s(k)} (in red), as simulated for the AMIP decade by the ECMW

(cycle 36) model. The time series comprises 39 seasonal samples k, the first at MAM of 1979 and the last at S

1988. (The MAM points are situated just to the right of the major tick marks labeled by each year on the abscis

arbitrary common references, the dashed horizontal lines indicate correlation/scatter values of 0.5. In a), the

correlations are computed globally (both land and ocean points), in b) only over land points, and in c) only over tr

(30 S to 30 N) land points. In all cases, the statistics are computed from N=15 independent realizations of the

pattern correlationss(k).
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Figure 12: As in Figure 11, except for seasonal anomalies of sea-level pressure.
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Figure 13: Maps of the average seasonal anomalies (isolines) of a) mean sea-level pressure, b) surface air temper

c) precipitation computed across 6 realizations of the season MAM 1983 that coincided with an historically intense E

The shading indicates where these mean anomalies are significantly different (at the 95% confidence level) from tho

MAM season of the other years of the decade 1979 to 1988 in which an El Niño did not occur (i.e., MAM of all years e

1987). See the text for further explanation.
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Figure 14: The meanµ{S} (dark bars) and scatterδ{S} (gray bars) of the time-averageS of the series of pattern

correlations s(k), season k = 1, ..., 39 for 11 seasonally averaged ECMWF model surface anomalies are show

for s(k) over all land points, and in b) fors(k) only over tropical (30S to 30N) . The dashed horizontal lines indica

arbitrary reference correlation/scatter values of 0.2. In both panels, the statistics are computed from N

independent realizations of the spatial pattern correlationss(k), and the surface anomalies are arrayed from left to rig

in descending order of their all-landµ{S} values in a).
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Figure 15: The mean maximumµ{M} of each anomaly’s series of pattern correlations s(k), season k = 1, ..., 39 fo

seasonally averaged ECMWF model surface anomalies are shown, in a) for all-land pattern correlations,and i

tropical -land(30S to 30N) correlations , where the dashed horizontal lines indicate arbitrary common referenceµ{M}

values of 0.5. In a) and b) also, brackets ( [ ] ) surrounding the surface anomaly label indicate coincidence ofµ{M} with

the intense 1982/83 El Niño. In both panels, the statistics are computed from N = 15 independent realization

spatial pattern correlationss(k), and the surface anomalies are arrayed from left to right in descending order of the

landµ{S} values, as depicted in Figure 14a).
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Figure 16: Geographical distribution of the fractionf of variance of sea-level pressure explained by the common oc

boundary forcing in seasons a) JJA and b) DJF. Shaded areas f > 0.5 are indicative of a potentially predictable 
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Figure 17: As in Figure 16, except for surface air temperature in seasons a) MAM and b) JJA.
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Figure 18: Time series of spatial pattern correlationsc(k) of the ensemble-mean seasonal anomaly of simulated m

sea-level pressure against that from the NCEP-NCAR reanalysis data (in blue) and the estimated uncertaintyc(k)

(in red). The time series includes 39 seasonal samples k, the first at time point MAM of 1979 and the last at tim

SON of 1988. (The MAM points are situated just to the right of the major tick marks labeled by each year o

abscissa.) The horizontal dashed lines indicate correlations of 0.5, which signify a minimum level of practically

forecast skill. In a) the spatial pattern correlations are computed globally, in b) over all land points, and in c) onl

tropical (30 S to 30 N) land points.
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Figure 19: As in figure 18, except for seasonal anomalies of precipitation.
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Figure 20: The time-meansC (dark bars) of the seriesc(k), season k = 1,...,39 of pattern correlations of the model’

ensemble-mean seasonal land-surface anomalies with their counterparts from the NCEP-NCAR reanalysis, al

the estimated uncertainties (gray bars) are shown, in a) forc(k) over all land points, and in b) forc(k) only over tropical

(30 S to 30 N) land points. As arbitrary common references, the dashed horizontal lines in a) and b) in

correlation/uncertainty values of 0.1. In both panels, the statistics are calculated from n = 6 independent

realizations and from a single realization of the NCEP-NCAR reanalysis, and the surface anomalies are array

left to right in descending order of their all-landC values, as depicted in a).
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Figure 21: The ensemble-mean maximaM of the seriesc(k), season k = 1,...,39 of pattern correlations of ensemble

mean seasonal model land-surface anomalies and their counterparts from the NCEP-NCAR reanalysis are s

a) for all-land points, and in b) only for tropical-land (30S to 30N) points. In a) and b), the dashed horizontal

indicate anomaly pattern correlations of 0.5, corresponding to a practically useful level of forecast skill. In both p

also, brackets ( [ ] ) surrounding the surface anomaly label indicate where there is a coincidence of the correspo

maximumM with the intense 1982/83 El Niño. In both a) and b), the statistics are calculated from n = 6 indepe

model realizations and from a single realization of the NCEP-NCAR reanalysis, and the surface anomalies are

from left to right in descending order of their all-landC values, as depicted in Figure 20a).
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